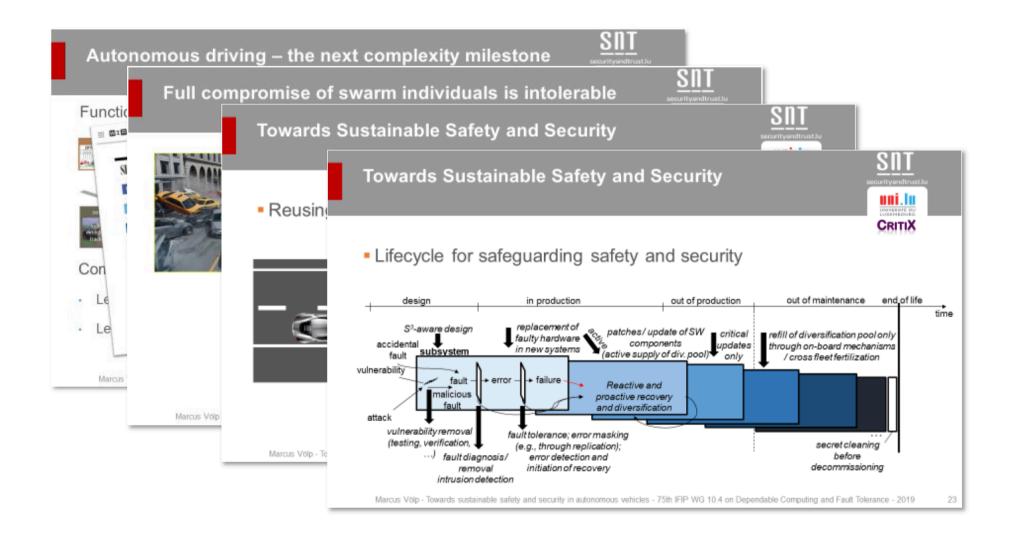
### Session 2 summary

(Reconfigured session with titles from sessions "Safety management and design" and "Autonomous vehicles")

#### Presentations:

Marcus Völp (University of Luxembourg): "Towards sustainable safety and security in autonomous vehicles"

Francesco Brancati (ResilTech) "A methodology to ensure safety (certification) of complex software in safety critical automotive systems"


# Towards sustainable safety and security in autonomous vehicles

- motivations/background:
  - "Autonomous driving –the next complexity milestone"
    - + extrapolating trend of complexity in car automation
  - added complexity/challenges: complexity of envisaged designs (cars and 'ecosystems', dictated by required functions for level 5 autonomy; challenges of perception, complexity of ethical decisions; reputation issues for vendors/promoters; keeping safe from attackers

#### Towards sustainable...

- proposed directions
  - fault/intrusion tolerance, incl. diversity; proactive recovery; maintaining "diversity pool"
    - + special attention to need to avoid complete compromise of a 'swarm' member
  - at application level, "plan B" for manoeuvres
  - a complete lifecycle to sustain safety and security
    - + high quality development, V&V: F/IT architecture
    - + while in use: patches and maintenance of diversity pool
    - + with safety/security oriented management, with dwindling effort, until manged complete decommissioning

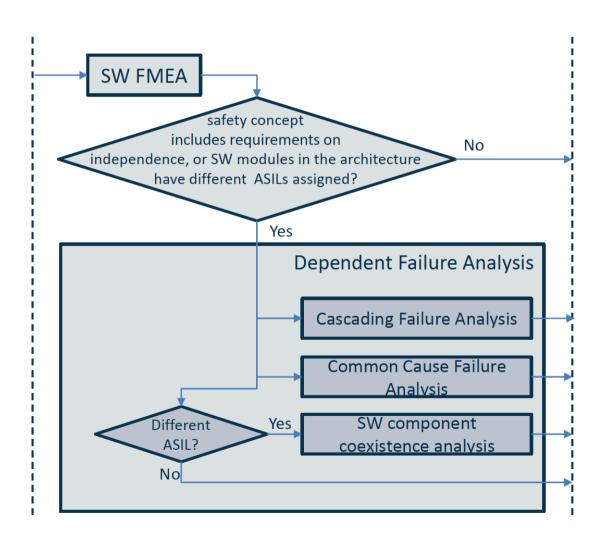
#### Towards sustainable...



# A methodology to ensure safety (certification) of complex software in safety critical automotive systems

violivation.

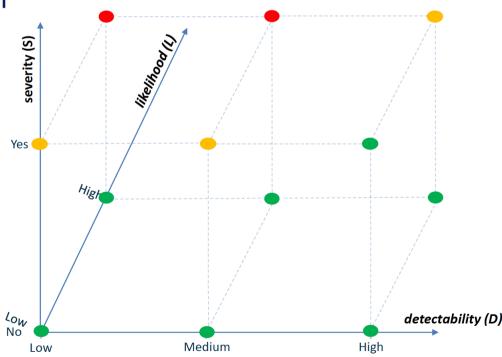
- growth in critical functions and their implementation with computer solutions coming from less critical application
- increasing need for built-in error detection
- in the framework of standard-driven practices
- need to support companies in appropriate application of standards (viz ISO 26262


#### main goals:

- assist verification of safety concept
- verify the coexistence criteria among the software components
- support the specification of safety mechanisms at software architecture level
- observation: can try to evolve trade-offs between architectural changes versus fault-removal techniques.

Main techniques: SW -FMEA FMEA and DFA

# methodology to ensure safety (certification)...


a systematic process for verifying an architecture design and recommending acceptance/ SIL changes / architecture changes



# methodology to ensure safety (certification)...

safety concept /architecture definition including systematic reference to ISO 26262 prescriptions/recommendation for error detection/handling

- FMEA as guided by ISO 26262 guidewords
- likelihood of events estimated (at least on coarse ordinal scale) with the help of product history, design analysis, complexity metrics, ...
- severity as two-level scale (severe or not)
- detectability: low, medium, high
- leading to 3-D matrix
- where state may be fine,
  "acceptable", to be improved



# methodology to ensure safety (certification)...

- also in presentation: similar systematic, standard-driven method for software Dependent Failure Analysis (Cascading failures, Common Cause failures, Software coexistence analysis)
- preliminary feedback from use
  - having a "methodology" is useful
  - guidance in applying runtime safety mechanisms a plus
  - liked by customers' quality departments
  - problems with architecture design not always available at analysis time
  - some difficulty guiding users to preferred solution
  - Plans for future work to support integration with fault injection, partially automated analysis

#### some themes

- common to most of the workshop:
  - need for F/I Tolerance
  - size of challenges
  - no safety without security
  - economics, how much we are willing to spend
- especially highlighted in this session
  - systematic lifecycle for whole lifetime
  - standard-driven processes [might not be enough for sufficient confidence but]
    - + require assistance/ advice for reasonable application
    - + involve dealing with multiple uncertainties